//Copyright (c) Microsoft Corporation. All rights reserved. using System; using System.Text; namespace SharpCifs.Util.Sharpen { // ************************************************************** // * Raw implementation of the MD5 hash algorithm // * from RFC 1321. // * // * Written By: Reid Borsuk and Jenny Zheng // * Copyright (c) Microsoft Corporation. All rights reserved. // ************************************************************** // Simple struct for the (a,b,c,d) which is used to compute the mesage digest. struct AbcdStruct { public uint A; public uint B; public uint C; public uint D; } public sealed class Md5Core { //Prevent CSC from adding a default public constructor private Md5Core() { } public static byte[] GetHash(string input, Encoding encoding) { if (null == input) throw new ArgumentNullException("input", "Unable to calculate hash over null input data"); if (null == encoding) throw new ArgumentNullException("encoding", "Unable to calculate hash over a string without a default encoding. Consider using the GetHash(string) overload to use UTF8 Encoding"); byte[] target = encoding.GetBytes(input); return GetHash(target); } public static byte[] GetHash(string input) { return GetHash(input, new UTF8Encoding()); } public static string GetHashString(byte[] input) { if (null == input) throw new ArgumentNullException("input", "Unable to calculate hash over null input data"); string retval = BitConverter.ToString(GetHash(input)); retval = retval.Replace("-", ""); return retval; } public static string GetHashString(string input, Encoding encoding) { if (null == input) throw new ArgumentNullException("input", "Unable to calculate hash over null input data"); if (null == encoding) throw new ArgumentNullException("encoding", "Unable to calculate hash over a string without a default encoding. Consider using the GetHashString(string) overload to use UTF8 Encoding"); byte[] target = encoding.GetBytes(input); return GetHashString(target); } public static string GetHashString(string input) { return GetHashString(input, new UTF8Encoding()); } public static byte[] GetHash(byte[] input) { if (null == input) throw new ArgumentNullException("input", "Unable to calculate hash over null input data"); //Intitial values defined in RFC 1321 AbcdStruct abcd = new AbcdStruct(); abcd.A = 0x67452301; abcd.B = 0xefcdab89; abcd.C = 0x98badcfe; abcd.D = 0x10325476; //We pass in the input array by block, the final block of data must be handled specialy for padding & length embeding int startIndex = 0; while (startIndex <= input.Length - 64) { GetHashBlock(input, ref abcd, startIndex); startIndex += 64; } // The final data block. return GetHashFinalBlock(input, startIndex, input.Length - startIndex, abcd, (Int64)input.Length * 8); } internal static byte[] GetHashFinalBlock(byte[] input, int ibStart, int cbSize, AbcdStruct abcd, Int64 len) { byte[] working = new byte[64]; byte[] length = BitConverter.GetBytes(len); //Padding is a single bit 1, followed by the number of 0s required to make size congruent to 448 modulo 512. Step 1 of RFC 1321 //The CLR ensures that our buffer is 0-assigned, we don't need to explicitly set it. This is why it ends up being quicker to just //use a temporary array rather then doing in-place assignment (5% for small inputs) Array.Copy(input, ibStart, working, 0, cbSize); working[cbSize] = 0x80; //We have enough room to store the length in this chunk if (cbSize < 56) { Array.Copy(length, 0, working, 56, 8); GetHashBlock(working, ref abcd, 0); } else //We need an aditional chunk to store the length { GetHashBlock(working, ref abcd, 0); //Create an entirely new chunk due to the 0-assigned trick mentioned above, to avoid an extra function call clearing the array working = new byte[64]; Array.Copy(length, 0, working, 56, 8); GetHashBlock(working, ref abcd, 0); } byte[] output = new byte[16]; Array.Copy(BitConverter.GetBytes(abcd.A), 0, output, 0, 4); Array.Copy(BitConverter.GetBytes(abcd.B), 0, output, 4, 4); Array.Copy(BitConverter.GetBytes(abcd.C), 0, output, 8, 4); Array.Copy(BitConverter.GetBytes(abcd.D), 0, output, 12, 4); return output; } // Performs a single block transform of MD5 for a given set of ABCD inputs /* If implementing your own hashing framework, be sure to set the initial ABCD correctly according to RFC 1321: // A = 0x67452301; // B = 0xefcdab89; // C = 0x98badcfe; // D = 0x10325476; */ internal static void GetHashBlock(byte[] input, ref AbcdStruct abcdValue, int ibStart) { uint[] temp = Converter(input, ibStart); uint a = abcdValue.A; uint b = abcdValue.B; uint c = abcdValue.C; uint d = abcdValue.D; a = R1(a, b, c, d, temp[0], 7, 0xd76aa478); d = R1(d, a, b, c, temp[1], 12, 0xe8c7b756); c = R1(c, d, a, b, temp[2], 17, 0x242070db); b = R1(b, c, d, a, temp[3], 22, 0xc1bdceee); a = R1(a, b, c, d, temp[4], 7, 0xf57c0faf); d = R1(d, a, b, c, temp[5], 12, 0x4787c62a); c = R1(c, d, a, b, temp[6], 17, 0xa8304613); b = R1(b, c, d, a, temp[7], 22, 0xfd469501); a = R1(a, b, c, d, temp[8], 7, 0x698098d8); d = R1(d, a, b, c, temp[9], 12, 0x8b44f7af); c = R1(c, d, a, b, temp[10], 17, 0xffff5bb1); b = R1(b, c, d, a, temp[11], 22, 0x895cd7be); a = R1(a, b, c, d, temp[12], 7, 0x6b901122); d = R1(d, a, b, c, temp[13], 12, 0xfd987193); c = R1(c, d, a, b, temp[14], 17, 0xa679438e); b = R1(b, c, d, a, temp[15], 22, 0x49b40821); a = R2(a, b, c, d, temp[1], 5, 0xf61e2562); d = R2(d, a, b, c, temp[6], 9, 0xc040b340); c = R2(c, d, a, b, temp[11], 14, 0x265e5a51); b = R2(b, c, d, a, temp[0], 20, 0xe9b6c7aa); a = R2(a, b, c, d, temp[5], 5, 0xd62f105d); d = R2(d, a, b, c, temp[10], 9, 0x02441453); c = R2(c, d, a, b, temp[15], 14, 0xd8a1e681); b = R2(b, c, d, a, temp[4], 20, 0xe7d3fbc8); a = R2(a, b, c, d, temp[9], 5, 0x21e1cde6); d = R2(d, a, b, c, temp[14], 9, 0xc33707d6); c = R2(c, d, a, b, temp[3], 14, 0xf4d50d87); b = R2(b, c, d, a, temp[8], 20, 0x455a14ed); a = R2(a, b, c, d, temp[13], 5, 0xa9e3e905); d = R2(d, a, b, c, temp[2], 9, 0xfcefa3f8); c = R2(c, d, a, b, temp[7], 14, 0x676f02d9); b = R2(b, c, d, a, temp[12], 20, 0x8d2a4c8a); a = R3(a, b, c, d, temp[5], 4, 0xfffa3942); d = R3(d, a, b, c, temp[8], 11, 0x8771f681); c = R3(c, d, a, b, temp[11], 16, 0x6d9d6122); b = R3(b, c, d, a, temp[14], 23, 0xfde5380c); a = R3(a, b, c, d, temp[1], 4, 0xa4beea44); d = R3(d, a, b, c, temp[4], 11, 0x4bdecfa9); c = R3(c, d, a, b, temp[7], 16, 0xf6bb4b60); b = R3(b, c, d, a, temp[10], 23, 0xbebfbc70); a = R3(a, b, c, d, temp[13], 4, 0x289b7ec6); d = R3(d, a, b, c, temp[0], 11, 0xeaa127fa); c = R3(c, d, a, b, temp[3], 16, 0xd4ef3085); b = R3(b, c, d, a, temp[6], 23, 0x04881d05); a = R3(a, b, c, d, temp[9], 4, 0xd9d4d039); d = R3(d, a, b, c, temp[12], 11, 0xe6db99e5); c = R3(c, d, a, b, temp[15], 16, 0x1fa27cf8); b = R3(b, c, d, a, temp[2], 23, 0xc4ac5665); a = R4(a, b, c, d, temp[0], 6, 0xf4292244); d = R4(d, a, b, c, temp[7], 10, 0x432aff97); c = R4(c, d, a, b, temp[14], 15, 0xab9423a7); b = R4(b, c, d, a, temp[5], 21, 0xfc93a039); a = R4(a, b, c, d, temp[12], 6, 0x655b59c3); d = R4(d, a, b, c, temp[3], 10, 0x8f0ccc92); c = R4(c, d, a, b, temp[10], 15, 0xffeff47d); b = R4(b, c, d, a, temp[1], 21, 0x85845dd1); a = R4(a, b, c, d, temp[8], 6, 0x6fa87e4f); d = R4(d, a, b, c, temp[15], 10, 0xfe2ce6e0); c = R4(c, d, a, b, temp[6], 15, 0xa3014314); b = R4(b, c, d, a, temp[13], 21, 0x4e0811a1); a = R4(a, b, c, d, temp[4], 6, 0xf7537e82); d = R4(d, a, b, c, temp[11], 10, 0xbd3af235); c = R4(c, d, a, b, temp[2], 15, 0x2ad7d2bb); b = R4(b, c, d, a, temp[9], 21, 0xeb86d391); abcdValue.A = unchecked(a + abcdValue.A); abcdValue.B = unchecked(b + abcdValue.B); abcdValue.C = unchecked(c + abcdValue.C); abcdValue.D = unchecked(d + abcdValue.D); } //Manually unrolling these equations nets us a 20% performance improvement private static uint R1(uint a, uint b, uint c, uint d, uint x, int s, uint t) { // (b + LSR((a + F(b, c, d) + x + t), s)) //F(x, y, z) ((x & y) | ((x ^ 0xFFFFFFFF) & z)) return unchecked(b + Lsr((a + ((b & c) | ((b ^ 0xFFFFFFFF) & d)) + x + t), s)); } private static uint R2(uint a, uint b, uint c, uint d, uint x, int s, uint t) { // (b + LSR((a + G(b, c, d) + x + t), s)) //G(x, y, z) ((x & z) | (y & (z ^ 0xFFFFFFFF))) return unchecked(b + Lsr((a + ((b & d) | (c & (d ^ 0xFFFFFFFF))) + x + t), s)); } private static uint R3(uint a, uint b, uint c, uint d, uint x, int s, uint t) { // (b + LSR((a + H(b, c, d) + k + i), s)) //H(x, y, z) (x ^ y ^ z) return unchecked(b + Lsr((a + (b ^ c ^ d) + x + t), s)); } private static uint R4(uint a, uint b, uint c, uint d, uint x, int s, uint t) { // (b + LSR((a + I(b, c, d) + k + i), s)) //I(x, y, z) (y ^ (x | (z ^ 0xFFFFFFFF))) return unchecked(b + Lsr((a + (c ^ (b | (d ^ 0xFFFFFFFF))) + x + t), s)); } // Implementation of left rotate // s is an int instead of a uint becuase the CLR requires the argument passed to >>/<< is of // type int. Doing the demoting inside this function would add overhead. private static uint Lsr(uint i, int s) { return ((i << s) | (i >> (32 - s))); } //Convert input array into array of UInts private static uint[] Converter(byte[] input, int ibStart) { if (null == input) throw new ArgumentNullException("input", "Unable convert null array to array of uInts"); uint[] result = new uint[16]; for (int i = 0; i < 16; i++) { result[i] = input[ibStart + i * 4]; result[i] += (uint)input[ibStart + i * 4 + 1] << 8; result[i] += (uint)input[ibStart + i * 4 + 2] << 16; result[i] += (uint)input[ibStart + i * 4 + 3] << 24; } return result; } } }